Labels

Sunday 30 October 2016

Time Independent Perturbation Theory - Degenerate

Similar to the non-degenerate case, we take our Hamiltonian $$H = H_0 + H'$$ except now, the initial unperturbed Hamiltonian has degenerate states. Assuming it is q- fold degenerate, if the symmetry giving rise to the degeneracy is disturbed, it will produce distinct 'q' non degenerate states. Our motive is to calculate the energy levels of these newly produced distinct energy levels. Let us consider two different initial eigenstates $E_1^0$ and $E_{q+1}^0$ [it is equal to the zeroth order term in the expansion] where $E_1^0$ is q-fold degenerate with states $$E_1^0 = E_2^0 = .... = E_q^0$$. As we have seen in non-degenerate perturbation theory, the coefficients $$c_{jn} = \frac{H'_{jn}}{E_n^0 - E_j^0}\,\,\,j\neq{n}\,\,and\,\, j,n\leq{q}$$ will become infinite for two different energy levels which has the same energy value. This situation can be avoided only if the numerator term is zero for all $j,n \leq {q}$ (Not the diagonal terms because $j\neq{n}$). It is equivalent to diagonalizing the sub-matrix $H'_{jn}\,\,\,\,for j,n\leq{q}$. This can be achieved by transforming to the new set of eigenfunctions from the initial set of eigenfunctions.
Thus, our problem for solving the energy values of the degenerate case reduced to diagonalizing the sub-matrix of H'. The diagonal elements are the change in energy levels of the initial degenerate states due to the perturbation. 
Representing the 'q' new eigenfunctions that diagonalize the $H'_{jn}$ as $\tilde{\psi_n}$ we write, $$ \tilde{\psi_n} = \sum_{m=1}^q a_{nm} \psi_m^0$$ Since, it will diagonalize, $$ \langle\tilde{\psi_n}\vert\tilde{\psi_j}\rangle = H'_{nj}\delta_{nj} $$ So, our new set of basis functions are, $$ Basis \,= \left\{\tilde{\psi_1},\tilde{\psi_2},\cdots\tilde{\psi_q},\psi_{q+1}^0,\cdots\right\}$$The diagonal element of the sub-matrix H' is the first order correction to the energy i.e. $$E'_n = \langle\tilde{\psi_n}\vert\tilde{\psi_n}\rangle = H'_{nn} \,\,n\leq{q}$$
Corresponding eigenfunctions are determined from $$H'\tilde{\psi_n} = E'_n\tilde{\psi_n}$$ substituting for new eigenfunctions in terms of initial wavefunctions, $$H' \sum_{m=1}^q a_{nm}\psi_m^0 = E'_n \sum_{m=1}^q a_{nm} \psi_m^0$$ Taking inner product with $\psi_j^0$ we have, $$\sum_{m=1}^q \left(H'_{jm} - E'_n\delta_{jm}\right)a_nm = 0\,\,\,n,j\leq{q} $$ It could be written simply in matrix form. For non-trivial solution for {a_nm} the determinant of coefficient matrix should vanish gives the secular equation in this case as, $$determinant\,\,\vert{H'_{jm}}-E'_n\mathbb{I}\vert = 0 $$ Using these the new eigenfunctions and eigenvalues are calculated.

No comments:

Post a Comment

Let everyone know what you think about this

All Posts

    Featured post

    Monopoles - 5 - Dirac Monopoles in Quantum Mechanics - Part - 1

    We know, Magnetic vector potential plays the crucial part in the Hamiltonian of an Electromagnetic system where the Hamiltonian formulation...

    Translate