Labels

Monday 25 January 2016

Quantum Harmonic Oscillator - Operator Method - 2

We have from Harmonic oscillator operator method - 1, $$a = \sqrt{\frac{m\omega}{2\hbar}} x - \sqrt{\frac{1}{2m\omega\hbar}} i p \\~\\ a^\dagger = \sqrt{\frac{m\omega}{2\hbar}} x + \sqrt{\frac{1}{2m\omega\hbar}} i p\\~\\ [a,a^\dagger] = -1\\~\\ aa^\dagger = \frac{1}{\hbar\omega}\left[H - \frac{\hbar\omega}{2}\right] \\~\\ a^\dagger{a}u = \lambda{u} \\~\\ a^\dagger{a} (au) = (\lambda+1) (au) \\~\\ a^\dagger{a} (a^\dagger{u}) = (\lambda - 1)(a^\dagger{u}) $$
Now, we can derive the result of Hamiltonian operator on this eigen vector, $$ H (a^\dagger{u}) = \hbar\omega \left(a^\dagger{a} - \frac{1}{2}\right)(a^\dagger{u}) = \hbar\omega \left( a^\dagger{a}a^\dagger{u} - \frac{a^\dagger{u}}{2}\right) \\~\\ = \hbar\omega\left[(\lambda -1) - \frac{1}{2} \right] (a^\dagger{u}) $$
Using the relation, $$ Hu = \hbar\omega (a^\dagger{a} - \frac{1}{2})u = \hbar\omega\left[\lambda-\frac{1}{2}\right]u = Eu $$
With its correspondence we can rewrite,
$$ H (a^\dagger{u}) = (E - \hbar\omega)(a^\dagger{u}) $$
Similarly, $$ H (au) = (E+\hbar\omega) (au)$$ 
or the general proof, $$ H (a^\dagger{u}) = Ha^\dagger{u} - a^\dagger{H}u + a^\dagger{H}u = [H,a^\dagger]u + a^\dagger{H}u \\~\\= [-\hbar\omega{a^\dagger} + E {a^\dagger}]u = (E - \hbar\omega)(a^\dagger{u}) $$
where, $$ [H, a^\dagger] = \hbar\omega[{aa^\dagger}, a^\dagger] +\hbar\omega[\frac{1}{2}, {a^\dagger}] \\~\\=\hbar\omega \left([ a,a^\dagger ] a^\dagger + a [ a^\dagger, a^\dagger] + [1/2, a^\dagger]\right) \\~\\ =\hbar\omega\left([a,a^\dagger]a^\dagger +0\right) = -\hbar\omega{a^\dagger} $$
As we can see, the repeated application of $"a^\dagger"$ continuously on any eigen function will give negative values for Energy. But, we have assumed the harmonic oscillator has positive energy, which restricts the negative energy states. 
So, we demand a wave function such that it gets annihilated when operated by operator $"a^\dagger"$ on its lower state. Let us say, the lowest ground state is $u_0$, then we have, $$ a^\dagger{u_0} = 0 $$ or $$ \sqrt{\frac{m\omega}{2\hbar}}x{u_0} + \sqrt{\frac{1}{2m\omega\hbar}} i p{u_0} = 0 $$ Non-dimensionalization gives, $$ \frac{1}{\sqrt{2}}(\rho +\frac{\partial}{\partial{\rho}})u_0 = 0 $$ where $\rho = \alpha{x} $ and $ \alpha = \sqrt{\frac{m\omega}{\hbar}}$ 

By solving this, the ground state wave function can be obtained. Once we get the ground state wave function, using creation operator we can derive all other eigen states. 

No comments:

Post a Comment

Let everyone know what you think about this

All Posts

    Featured post

    Monopoles - 5 - Dirac Monopoles in Quantum Mechanics - Part - 1

    We know, Magnetic vector potential plays the crucial part in the Hamiltonian of an Electromagnetic system where the Hamiltonian formulation...

    Translate