Loading web-font TeX/Math/ItalicMathJax/extensions/tex2jax.js

Labels

Saturday, 26 December 2015

Cartesian to Spherical coordinate system - Coordinate Transformation

In general orthogonal curvilinear coordinate system, general position in 3 dimension is given by, \vec{s} = \vec{s}(u_1, u_2, u_3)
and small displacement "ds" is
 can be written as, \vec{ds} = \sum_i^3 \frac{\partial{\vec{s}}}{\partial{u_i}} du_i
where $ \frac{\partial{\vec{s}}}{\partial{u_i}} = h_i \hat{e_i} $ and $\hat{e_i} $ is the unit vector along the 'i'th direction. Rewriting it in simple form, we have, \vec{ds} = \sum_i^3 h_i du_i \hat{e_i}

For cartesian coordinate system, $h_i = 1$
$\rightarrow$ 
\vec{ds} = dx \hat{e_x} + dy \hat{e_y} + dz \hat{e_z}

But there is no unique choice of coordinate system, we can also choose spherical coordinate system as, 
\vec{ds} = dr \hat{e_r} + r \,d\theta\hat{e_\theta} + r \,sin\theta \,d\phi \hat{e_\phi}
with corresponding scaling factors. 


To go from one coordinate system to another, we use the relations, x = x(r,\theta,\phi) \\~\\ y = y(r,\theta,\phi) \\~\\ z=z(r,\theta, \phi)
 

The only relation we know from our conventional assumption is that, x = \,r \,sin\theta \,cos\phi \\~\\ y = \,r \,sin\theta \,sin\phi \\~\\ z = \,r \,cos\theta\,
 

Using the chain rule, dx = \frac{\partial{x}}{\partial{r}}dr + \frac{\partial{x}}{\partial{\theta}} d\theta + \frac{\partial{x}}{\partial{\phi}}d\phi

$\rightarrow$ dx = \,sin\theta \,cos\phi \,dr + r \,cos\theta\, cos\phi \,d\theta - r \,sin\theta \,sin\phi \,d\phi

Similarly, dy = \, sin\theta \, sin\phi \, dr + r \, cos\theta \, sin\phi \, d\theta + \, r\, sin\theta\, cos\phi \, d\phi
and dz = cos\theta \, dr - r\, sin\theta \, d\theta

Applying it in our Cartesian equation for "ds", we get, ds =(\,sin\theta \,cos\phi \,dr + r \,cos\theta\, cos\phi \,d\theta - r \,sin\theta \,sin\phi \,d\phi )\hat{e_x} \\~\\+ (\, sin\theta \, sin\phi \, dr + r \, cos\theta \, sin\phi \, d\theta + \, r\, sin\theta\, cos\phi \, d\phi)\hat{e_y} \\~\\+ (cos\theta \, dr - r\, sin\theta \, d\theta) \hat{e_z}
 


Thus we expressed the infinitesimal displacement in cartesian system using spherical measurements such $ r, \theta, \phi $. Now, from our definition of unit vector, \hat{e_r} = \frac{{\frac{\partial{\vec{s}}}{\partial{r}}}}{|\frac{\partial{\vec{s}}}{\partial{r}}|}
and \hat{e_\theta} = \frac{{\frac{\partial{\vec{s}}}{\partial{\theta}}}}{|\frac{\partial{\vec{s}}}{\partial{\theta}}|}
and \hat{e_\phi} = \frac{{\frac{\partial{\vec{s}}}{\partial{\phi}}}}{|\frac{\partial{\vec{s}}}{\partial{\phi}}|}
 

Using the above, equation, we can write the unit vectors along $r,\,\theta,\,\phi $ directions as follows, \hat{e_r} = sin\theta\, cos\phi\, \hat{e_x} \,+ \,\sin\theta\,sin\phi\,\hat{e_y} \,+\, cos\theta\,\hat{e_z}
and \hat{e_\theta} = cos\theta\, cos\phi \,\hat{e_x} \,+\, \cos\theta\, sin\phi \,\hat{e_y} - sin\theta\,\hat{e_z}
and \hat{e_\phi} = \,-sin\phi \,\hat{e_x} \,+ \,cos\phi\,\hat{e_y}
From these three unit vectors we can solve for the other three unit vectors as following,

Solving the first two,
  sin\theta\,\hat{e_r} + \, cos\theta\,\hat{e_\theta} = \,cos\phi \hat{e_x} + \,sin\phi \,\hat{e_y}

Combining with the third we can solve for x and y, \hat{e_x} = sin\theta\,cos\phi\,\hat{e_r} + cos\theta\,cos\phi\,\hat{e_\theta} - \,sin\phi\,\hat{e_\phi}
and \hat{e_y} = \,sin\theta\,sin\phi \hat{e_r} +\, cos\theta\, sin\phi\, \hat{e_\theta} + \,cos\phi\, \hat{e_\phi}
and finally solving for z, \hat{e_z} = cos\theta\,\hat{e_r} - sin\theta\,\hat{e_\theta}

That is all we do need to derive for the coordinate transformation from cartesian to spherical. 

No comments:

Post a Comment

Let everyone know what you think about this

All Posts

Featured post

Monopoles - 5 - Dirac Monopoles in Quantum Mechanics - Part - 1

We know, Magnetic vector potential plays the crucial part in the Hamiltonian of an Electromagnetic system where the Hamiltonian formulation...

Translate